
]nt, J. Heat Mass Transfer. Vol. 1, pp. 173-191. Pergamon Press 1960. Printed in Great Britain. 

ANALYSIS OF THE FLOW AND ENERGY SEPARATION 

IN A TURBULENT VORTEX 

R. G. DEISSLER and M. PERLMUTTER 

Lewis Research Center, National Aeronautics and Space Administration, 
Cleveland, Ohio 

( R e c e i v e d  16 June 1959) 

.Absa.act--An analysis is made of the velocity, temperature and pressure distributions in a turbulent 
vortex with radial and axial flow. For  making the calculations the vortex is divided into a ~ore and an 
annular region, each with a different uniform axial mass velocity, although the equations obtained are 
applicable to an arbitrary axial mass velocity distribution. Tangential velocity, temperature and 
pressure distributiom, as well as curves for overall energy or  temperature separation, are presented and 
compared with experiment. 

Using the analytical results, the causes of the energy separation are studied. It is concluded that the 
most important factor affecting the total temperature of a fluid element in a compressible vortex is the 

turbulent shear work done on or by the element. 

R~amG---Une analyse eat fare  des distributions de vitesses, de temlxtratures et de pressions dans un 
tourbilion turbulent/t  i~..oulement radial et axial. Pour faire les calculs, ie tourbillon a ~6 divis~ en 
denx r~lions: noyau et r~gion annulalre, chaque r ~ i o n  ~ t  une v i ~ s e  axiale uniforme 
diff~rente, bien que les bquations obtenues soient applicables b une distribution arbitralre des vitesses 
axiaies. Les distributions de vitesses tangentielles, de temp~atures et de pressiom, aimi que des 
courbes pour la s~arat ion d'~nergie et de temperature de l'ensemble, sont pr~w'nt6es et compar~es 

I'exp~riem~. 
Les causes de la s6paration d'imergie sont ~udi6es/t  partir des r~ultats analytiques. En conclusion, 

ie facteur le plus important affectant la temp~ature totale d'un 616ment de fluide dans un tourbillon 
compressible est le travail de cisaillement turbulent effectu~ sur, ou par, l'61~nent. 

Z x m a m l a f f a ~ g - - D i e  Verteilungen der Geschwindigheit, tier Temperatur und des Drucks in einem 
turbulenten Wirbel wurden fOr radialen und axialen Strom untersucht. Hierzu wurde der Wirbel in 
einen Kern und einer Ringzone eingeteilt, wobei fOr jede eine verschiedene, aber einheitliehe axiaie 
Massengeschwindigheit ansenommen wurde, obwohl d ie  erhaltenen Gleiehungen auch fOr eine 
beliebige Verteilung de..- axialen Massengeschwindigheit gelten. Die Verteilungen der Tangential- 
geschwindigi~eit, der Temperatur und des Druckes wurden ebenso wie die Kurven fOr die T~-nnung 
der Gesamtenergie oder der Temperatur angegeben trod mit dem Experiment vergiichen. 

Unter Benutztmg dieser Rechenergebnisse wurden die Ursachen fOr die Energietrennung untersucht. 
Es wLrd Bescldossen, dab der wichtipte Faktor, der die Gesamttemperatur eines Fllissigkeitselementes in 
einem kompressiblen Wirbel beeinfluBt, die turbulente Scherarbeit ist, die an einem oder dutch ein 

Element geleistet wird. 

Ab~¢t----OCHOBHOI~ aa~aqetl HaCTOFIIRe~ pa6oTlg flB21HeTCR xcc~e~oBaHae pacnpe~e~ennn 
cHopocTH, TeMnepaTypu z ~aB:leHnfl B TypSyaemmox Bnxpe. B OCtloBe anaanaa  noJlo~eHo 
cxexaTnqecKoe npe~cTaBaeHne o paa~e~enHn Bnxpa Ha 9.~po n napyZKHym o6aacr~,. Ham~an 
o621aCTb nxeeT c~olo COSCTBeHHym HOCTORHHyiO cHopocTb nepeMelRenn~ MatCh1 BJgO~Ib ocn,  
XOTR no~yqenntae ypaBnennn MO;~tlO npHMeHwrb ~.rlR c21y~laR npoHaBonbnoro pacnpe~e01entltl 
Ci~opocTH tl ~BHmellHfI MaccI~ no OCRM. I'Io~yqeHhl rpa~nRH pacnpe~eaenK~ TexnepaTypu,  
~aBnennH, norenRtmmbHoit Ct~opocTn, a TaR me north TexnepaTyp~ n anepzmn, tCoTop~e 
conocraB.qenl~ c ascnepxxenTa.~bn~Mn ~aHHMMH. Ha OCHOBe anaaxTHqecHoro ~ccaeJIoeaH~R 
asTopta r i p ,man  H aaR0noqenHlO, ~rl'o nan6o~ee BaHoI~M ~ah'TOpOX, BJIR~IonDIM Ha noways) 
ao~aabsy~o TeMnepaTypy raao-mnaaocTnoro c ~ a x a e x o r o  BI~Xpn, Rn~ifIe'rcf~ pa6oTa Typ- 

6ynenTHoro nepeaemenaR.  
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NOMENCLATURE 
c~, specific heat; 
D d 
D-0' substantial derivative; u ~ as used 

here; 
f .  

iro~ ~ 
K, parameter ] 

I t , .  

k, thermal conductivity; 
M 0 Math number based on tangential 

velocity at outer radius; 
P, stagnation or total pressure; 
p, static pressure; 
Re~, Reynolds number, --u~ripd pe ; 
Reo Reynolds number based on outer 

radius; Re~ W/Wc;  
r', nondimensional distance along radial 

co-ordinate, r/r~ ; 
T, t, total and static temperatures; 
T', t', nondimensional total and static tem- 

perature, T/(v~/2c~), t/v~/2c~; 
To, mean total temperature of fluid leav- 

ing core; 
To, mean total temperature of fluid enter- 

ing vortex tube; 
Th, mean total temperature of fluid leav- 

ing annulus; 
u, v, w, radial, augular and axial components 

of velocity; 
W, total mass flow entering system; 
W o  mass flow leaving core; 
Wt., mass flow leaving annulus; 
v', nondimensional angular velocity, v/v~; 
z, distance along axial co-ordinate; 
~,, ratio of specific heats; 
e, eddy diffusivity; 
0, time; 
0', dimensionless time; --(udr~)0; 
t~, viscosity; 
p, density; 
~'. turbulent shear stress, pc(dr~dr --  v/r); 
• -', dimensionless turbulent shear stress 

1 i/d_dv ' l / ) .  
Re---~ t a r '  - -  ? ' 

4, turbulent dissipation = 
pe(dv/dr --  v/r)2; 

4". dimensionless turbulent dissipation; 
2 _ 

Rei [dr' r' ] " 

Subscripts 
i, pertaining to core or reference radius: 
0, pertaining to outer radius of vortex. 

INTRODUCTION 
THE problem considered here is that of the 
velocity and temperature distributions in a tur- 
bulent compressible vortex with radial and axial 
flow. That problem occurs, for instance, in 
connection with the Ranque-Hilsch vortex tube 
[1]. In that apparatus gas enters a tube tangen- 
tially through nozzles so as to form a vortex 
within the tube. Cold gas can then be withdrawn 
axially from the region near the center of the 
tube and hot gas from the annular region at 
larger radii. A total temperature or energy 
separation thus occurs within the vortex. The 
vortex tube should be useful for obtaining 
quantities of either hot or cold air. The feature of 
no moving parts might make it especially 
attractive for applications where extreme tem- 
peratures are desired. For instance, a vortex 
tube might conceivably be used to obtain higher 
propellant temperatures in a nuclear rocket than 
could be obtained by the nuclear reactor alone, 
which is limited in temperature by the reactor 
materials. The walls of the vortex tube could be 
cooled to prevent melting, and the cold stream 
from the vortex could be reheated in the reactor. 

A great deal of work, both experimental and 
analytical, has been done in connection with the 
phenomenon described above. A summary of 
the work done between 1931 and 1953 is given in 
[2]. Some additional investigations since that 
time are given in [3, 7, 12]. Although many of the 
important factors in the phenomenon have been 
considered in one or another of the previous 
papers, it appears that all of the analyses neg- 
lected at least some of the important factors. 
Also, a more thorough discussion of the causes of 
the energy separation would be desirable. The 
present writers in a preliminary study [5], of 
which the present paper is a refinement and 
extension, have attempted to include the per- 
tinent terms in the compressible laminar and 
turbulent momentum and energy equations. 
Only the turbulent case is considered herein. 
inasmuch as it was shown in [5] that the energy 
separation in actual vortex tubes cannot be 
accounted for by considering a laminar vortex. 
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(Energy separation can also occur in a laminar 
vortex but the radial flow must be extremely 
small.) The effect of energy diffusion due to thc 
expansion and contraction of the turbulent 
eddies as they move radially in a pressure gradi- 
ent is included in the equations. 

The model considered (Fig. 1) is an axially 
symmetric vortex in which the tangential 
velocity and temperature are independent of 
axial position. The tangential and radial veloci- 
ties, as well as the temperature, are specified at a 
reference radius. In addition, the axial mass 

v/ 
ri 

- u  

' "  / ( pw ) : ,  w,. 

-U Z 

FIG. 1. Vortex model used in analysis. 

velocity is specified as a function of radius and 
axial position. As will be shown, only a linear 
variation of axial mass velocity with axial 
position is consistent with the assumption of a 
tangential velocity independent of axial position, 
but the variation of axial velocity with radius can 
be arbitrary. For the present calculations a 
uniform axial mass velocity (pw)e in a region 
near the center and a different uniform axial 
velocity (pw)h in the remaining annular region 
were assumed. The analysis predicts the tangen- 
tial velocity and temperature as functions of  
radius. For calculating the temperature distribu- 
tions it was assumed, in order to make the 
equations tractable, that squares of axial and 
radial velocities are small compared with squares 
of the tangential velocities. 

VEIX)CITY DISTRIBUTIONS 

In the present model the flow is taken to be 
axially symmetric and steady state with no body 

forces. For that case the compressible Navier- 
Stokes equation for the tangential c~mponent 
of the velocity~ [8], reduces to 

~v ~v puv ~ / e v ~  
pu ~ ÷ pw ~ + - 7 -  = ~ ~" }~ + 

2~ Ov 
@ ~ r { b t ( ~ - - ~ ) } - [ - - ~ - ( ~ r  - v )  (I) 

For turbulent flow the increased shear stress due 
to the turbulence can be accounted for by 
replacing ~ by ~ + pe in the momentum equa- 
tion. The quantity pe is the eddy viscosity and 
depends on the turbulent mixing at a point. 
Except near boundaries, or at low Reynolds 
numbers, ~ is small compared to pe and can be 
neglected. Although pe is in general a variable, 
it appears reasonable to assume that it can be 
considered constant for a vortex with radial 
flow. This assumption is in agreement with the 
experiments in [6] for incompressible flow. 
Because of lack of information on compressible 
vortex flow, and because of the considerable 
simplificatidn obtained, we will assume that pe 
can be considered constant also for compressible 
flow and then attempt to justify the assumption 
by comparison of the results with experiment. 

Inasmuch as our model assumes that v is 
independent of z, equation (1) becomes, for 
turbulent flow: 

dv puv ( dZv l dv v ) 
p u - ~ - f  r = pe - -  - ~  - f  r d r  r z (2) 

Essentially the same result could have been 
obtained by dividing the instantaneous velocities 
and densities in equation (1) into mean and 
fluctuating components, taking time averages, 
and setting the Reynolds stress 

" ~  = -- e(dv/dr -- v/r) 

by analogy with the laminar shear stress. Note 
from equation (2) that the assumption that v is 
independent of z implies that au is also inde- 
pendent of z. The general solution of equation 
(2) is: 

V = - r  rexp dr d r + - ~  (3) 
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Using the boundary condition that the velocities 
at the axis of the vortex cannot be infinite, 
equation (3) can be written in dimensionless 
form as 

I'" (If ) r 'exp - - - - d r '  dr' 
U' ~ 0 P ~  

r, flor, e x p ( f l ,  p;&dr,)dr,  (4) 

where the subscript i refers to values at a refer- 
ence radius and the primes indicate that the 
quantities have been divided by their values at 
ri. 

In order to relate the radial flow to the axial 
flow, we use the continuity relation 

~(,r + 8 ~ ¢ , r  , _ 0 (5) 
~r ~z 

Integrating equation (5) between the axis and 
the radius r results in 

I ,  pw) 
rpu = -- ~ r dr (6) 

o 

Inasmuch as pu is a function only of r, equation 
(6) shows that a(pw)/Sz is a function only of r. 
Therefore 

pw = [pw(r)] 0 + f(r)z  (7) 

where the subscript zero refers to values at 
Z = 0 .  

In order to make numerical calculations it is 
necessary to assume a variation of O(pw)/Oz or of 
pw with r. The vortex is divided into two regions, 
a core with radius &, and an annular region with 
inner and outer radii rt and re (Fig. 1). In each of 
these regions pw, and thus O(gw)/Oz (equation 
(7)), is assumed independent of r, but there can 
be a step change in pw at the interface between 
the two regions. Note that it is not necessary for 
the axial flow to be in the positive direction in 
both regions. 

Consider first the core region. Dividing 
equation (6) by the same equation evaluated at 
r;, and integrating, show that 

Equation (4) then becomes 

v' 1 [1 -- exp (--Re~r'2/2)] 
---- r --7 ~ ~ L S ~ - p ~  ~ 

where 

(9) 

Re~ = P i u i r i  

pe 

The negative sign is included in the definition of 
Reynolds number because u~ is negative in the 
cases of interest here. Equation (9) was obtained 
by Einstein and Li [6]. For very large radial 
flows, equation (9) reduces to v' = I/r' (inviscid 
flow) except close to the center, whereas for 
small radial flows, v' = r' (wheel flow). 

For calculating velocities in the annulus, with 
pw independent of r, one can break the integral in 
equation (6) into two parts, one with limits 0 and 
ri, the other with limits r~ and r. Dividing the 
equation by &p~u~, integrating and making use 
of equation (7), result in 

where 

rpu _ 1 -+-K(r ' 2 -  1) (10) 
r~piu~ 

K - wh/w~ (11) 
(re~r,) ~ - -  1 

and Wh and Wc are the total axial flow out of the 
annulus and the core, respectively. Breaking the 
integrals in the numerator of equation (4) into two 
parts, substituting equations (8) and (10), and 
carrying out the integrations, result in the follow- 
ing equation for v' for the annulus. 

v' Re~ exp (Re,K~2) 1 r' Re~ (K - 1) ÷ 1 X 
= 

x exp ( - -Re ,  Kr'2/2) dr' + 1 (12) 
r '  

Equations (9) and (12) automatically satisfy the 
condition that dv'/dr' is continuous at r' = I. 
Equation (12) can be integrated numerically. 

Typical predicted tangential velocity distribu- 
tions for several values of turbulent Reynolds 
number and of axial mass-flow ratio are pre- 
sented in Fig. 2. In these curves Reo rather than 
Re~ is used as a parameter, where 

pu/p~u~ -~ r/& (8) Reo -~ pouoro/pe = Rei W/W~ 



F L O W  A N D  E N E R G Y  S E P A R A T I O N  I N  A T U R B U L E N T  V O R T E X  177 

W is the total flow out of both the core region 
and the a nnnlus. (A possible method for pre- 
dicting the turbulent Reynolds number will be 
discussed in the next section.) These curves were 
calculated for a radius ratio ro/r~ of 2.2. Other 
radius ratios give similar results, but the peaks of 
the curves fall closer to the center of the vortex 

~0 
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FIG. 2. Tangential velocity distributions in vortex. 
re/r~ : 2"2. 

?,2 

for .higher radius ratios. The radial flow in these 
figures, as well as in all of the subsequent 
figures, is toward the center of the vortex. It 
should be mentioned that these curves apply to 
laminar flow if ?e in the Reynolds number is 
replaced by/,. 

The curves for large values of W J  W and small 
Reynolds number behave similarly to those for 
large values of Reynolds number and small 
Wc/W. The limiting curve for a radial flow 
Reynolds number of zero corresponds to wheel 
flow, whereas the curve for Reo = oo corre- 
sponds to inviscid vortex flow. Except at the 
lower Reynolds numbers the curves tend to 
approach the inviscid flow line (v/vo ----re~r) in 
the outer region, whereas they approach wheel 
flow near the center. That is, it appears that the 

flow in the outer region is governed by inertia 
effects, whereas near the center the viscous 
effects become more important, This can be seen 
more clearly if we write the momentum equation 
(equation (2)) in the following form: 

p--,. DO---' = p:,--,, r-' +  ,ar' + : (13) 

where 0' = -uiO/r~ is a dimensionless time, 

~'" -- (dv'/dr' -- v'/r')/Re, (14) 

is a dimensionless shear stress, and Rei is the 
radial flow Reynolds number evaluated at some 
reference radius. The terms on the right side of 
this equation give the contributions which go to 
increase or decrease the tangential velocity of a 
particle at a given radius, as it moves toward the 
center of the vortex. The first term on the right 
side represents an inertia force per unit volume 
and tends to accelerate the particle in order to 
maintain constant angular momentum. The 
second term represents the net viscous shear force 
acting on the particle and tends to slow it down. 
These terms, together with the term on the left 
side of the equation giving the net rate of change 
of velocity of the particle,, are plotted in Fig. 3 
for the case where the axial velocity is uniform 
throughout the vortex. This case is shown for 
illustrative purposes; other axial velocity distri- 
butions should give qualitatively similar results. 
It is seen that in the outer regions (or for high 
Reynolds numbers) the net viscous force tending 
to slow the particle down is negligible compared 
with the inertia effect, so that constant angular 
momentum is preserved in that region. (Note 
that the curve for the inertia term also represents 
the tangential velocity profile in this particular 
case.) The fact that the net viscous shear force 
on the element is negligible means only that the 
tangential shearing forces on the sides of the 
element cancel, although they may be individu- 
ally appreciable. In the region closer to the center 
(or for lower Reynolds numbers) the inertia and 
viscous forces become of the same order of 
magnitude, and at the center the ratio of viscous 
to inertia terms approaches 2. Thus the fluid 
particle decelerates in that region. Inasmuch as 
the radial velocity goes to zero at the center, 
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one might have expected the ratio of viscous to 
inertia terms to approach infinity rather than 2 
at that point. However, it should he pointed out 
that the viscous stress exists only because of the 
inertia effect; for wheel flow there would be no 
viscous stress. It is the deviation from wheel flow 
produced by the inertia effect which gives rise to 
the viscous shear stress. 

6f-x.v'~;/( t - e'Rel/2) 

4-- 

2k 
J 
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FIo .  3. Terms  in momentum equation (equation ( 1 3 ) )  
contributing to local rate of change of velocity of 
fluid element with rmpect to time. Uniform axial 

mass velocity. 

In order to determine whether the analytical 
method gives velocity distributions in reasonable 
agreement with experiment, the data of Hartnett 
and Eckert [7] were used. Those investigators 
measured velocity and temperature distributions 
at various axial positions in a vortex tube. Most 
of the axial flow occurred in the outer regions of 
the vortex, inasmuch as there was no opening at 
the vortex center. Although the axial mass 

velocity was not uniform in the outer region, it 
was assumed for purposes of comparison with 
the analysis, that the vortex could be divided into 
an outer region with uniform axial mass velocity, 
and an inner core, where the axial velocity is 
zero. It would have been possible to work out the 
analysis using the experimental axial velocity 
distributions, but the above simpler procedure 
was adopted. The data closest to the inlet 
nozzle are compared with analytical results for 
W c / W  ---- 0 in Fig. 4. For calculating the analyti- 
cal curves, it was estimated from the data that 

lyi 

12 

IC 

v /v i  

6 INLET 
PRESSURE, 

.~ . - : :_ . . - .  ~ Io Psm 

/ / /  

o i 1 ; '- ,~o ~ i, 
r/r~ 

FIG. 4. Comparison of analytical tangential velocity 
pro~es with ©xl~-rim~ts in [7]. 

WdW -- 0, ro/r~= l'54. 

the radius ratio for the outer and inner regions 
is about 1.54. This value gives approximately no 
net axial flow in the core for the experimental 
data. The shapes of the analytical and experi- 
mental curves agree reasonably well, indicating 
that the turbulent radial flow Reynolds numbers 
Reo lie between I0 and 50. These values are 
probably too high, however, because the effect 
of viscos/ty tends to make the velocities low near 
the tube wall. Viscous boundary layer effects 
are, of course, neglected in the analysis. 

~ T U R E  A N D  PRESSURE DISTRIMUTIONS 
The steady-state energy equation for the 

compressible, axially symmetric flow of a perfect 
gas is [8] 
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/ ,% u ~ + W-Fz - u =- = , or -- W~-2 

1 0 [ r k ~ t ]  b [ k ~ t ~  
= r ~  ~/ ~ - ~  ~1 + 

+ ~ L Ll, Or/ Jr + t.O-z! 3 + 

3 N + r  + : 
Assuming that t and v (and consequently u) are 
independent of ~, neglecting squares and pro- 
ducts of small quantities, where u and w are 
considered small compared to v, and combining 
equation (15) with the three momentum equations 
so as to eliminate the pressure gradients, result in 

Ot ~ (v=/2) k ~ (r Ot/Or) 1 
c ,pur  - ~  + rpu b ~  ~ ~- (16) 

In laminar flow with small radial velocities, or 
large viscosity, equation (16) shows that 
t = constant, that is, the static temperature is 
uniform because of conduction. For large radial 
flow or small viscosity t + vz/2 c~ ---- constant, 
or the total temperature is uniform. 

The energy equation (16) can be adapted to 
turbulent flow by replacing t~ and k by pe and 
p%eh, respectively. The quantities e and ~h are 
the eddy diffusivities for momentum and heat 
transfer. Inasmuch as the assumption ~ = ~h 
has given good results for flow through tubes, 
that assumption will be retained here in the 
absence of other experimental information. 
Adding a term to account for the effect of  
radial pressure gradient on the turbulent heat 
transfer, which will be discussed in the next 
paragraph, equation (16) becomes 

1 
dt r ou &= 

c'pur-d-i  + 2 dr - -  

+3-/~ 
M 
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As in the case of the equation of turbulent 
momentum, equation (17) could have been 
obtained by breaking the instantaneous tem- 
peratures, velocities, and densities into mean and 
fluctuating components and setting 

u~' = --  e(dt/dr - -  (1/pc~,) dp/dr) 

and "ff~' = -- e(dv/dr - -  v/r). 

The term --(1~pc,)  dp/dr is added to dt/dr in 
equation (17) inasmuch as the turbulent heat 
transfer appears to be a function of pressure 
gradient as well as of temperature gradient. 
That assumption has been made by several 
authors [4, 7, 9]. When the turbulent particles 
move radially to regions of different pressure 
they expand or contract so that they arrive at the 
point of mixing at a temperature different than 
they would have had in a uniform pressure field. 
It was found in [10] that turbulent particles 
appear to move adiabatically except at low Peclet 
or Reynolds numbers, where the effect of con- 
duction to a particle may become appreciable. 
Assuming the isentropic expansion or contrac- 
tion of eddies, one would expect that for the ease 
of no net heat transfer, the temperature distribu- 
tion should be isentropic rather than isothermal.* 
That is, the relation between temperature and 
pressure should be given by 

t = const, py-~!y, or dt __ __1  dp (18) 
dr pc,  dr 

which is identical to equation (17) for the ease of 
no radial heat transfer. The addition of the term 
(I /~p)  dt/dr to equation (17) therefore appears 
to be justified. The term can also be obtained by 
means of a modified mixing-length theory which 
is given in the Appendix. 

The above assumption concerning the expan- 
sion and contraction of eddies also appears to 
receive strong support from meteorlogical 
observations. A n  isentropic relation between 
temperature and pressure as altitude increases 

* Although irreversible effects are operative in the 
fluid as a whole, it appears that the expansion or contrac- 
tion of an individual eddy might be considered isentropic, 
inasmuch as the normal viscous stress is usually negligible 
in the absence of  shock waves. The assumption is sup- 
ported by exper/mcnt, especially by meteorological 
observations. 
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has been found for highly turbulent atmos- 
pheres, whereas for quiescent conditions the 
atmosphere is isothermal [11]. 

For small radial and axial velocities the 
momentum equation for the radial direction 
reduces approximately to 

@ - -  or2 (19) 
dr r 

Substituting equation (19) into (17) one finds 
that for large radial flows or small turbulent 
diffnsivities the total temperature is constant as 
in the case of laminar flow. On the other hand, 
for small radial flows or large terbulent diffnsivi- 
ties t -- t, = (vtl/2cpr~ 2) (r 2 -- rt2), in contrast to 
the laminar ease, where the static temperature 
was uniform. The static temperature difference 
in the turbulent ease is caused by the expansion 
and contraction of  the eddies moving radially 
as discussed above. As in the ease of the velocity 
distributions pe is considered constant. 

I f  we divide the vortex into an annular and a 
core region, each with a uniform mass velocity 
as before, we obtain, for the core 

{1 -- exp (--Red2} 2 , dr' 
2Rei r ~ = 

3 
= ~ {exp ( - - R e i r ' t / 2 )  - -  1} 3 + 

+ exp (--Reir'2[2) + (20) 

+ exp(--Re~r'l/2) [4 In{x/(Re,) r'} -- 

-'[Re~r'2~ ~ ' [  Reir'2]-- 1.2319] 

where it was assumed that dt'/dr' cannot be 
infinite at r' = 0. For the annular re#on 

dt' 7 
exp (Re,Kr'S/2) r 'l-R,i (K-l) dr__.~, = 

\d r / e= t  exp (Re~K/2) + 

Ii + exp (ReiKr'~/2) r'-R'd K-l) (21) 

-- r' d~'2 dda 
" ~ f  + dr--r 

where (dt'/dr'),.=~ is obtained from the 
solution for the core. Equation (21) was inte- 
grated numerically. The derivatives of v' are 
obtained from the solutions for the velocity 
equation. The quantity t' can then be obtained 
by numerical integration of the equation 

t' -- t / =  ~dr'] dr' (22) 

In equation (20) we can see that 

t' {1 -- exp (--Red2) }Z/Re, 

is a function only of a/(Rei)r, so that the 
equation cam be integrated once for all Reynolds 
numbers. The dimensionless total temperature 
difference can be obtained from the static 
temperature by the equation 

T ' - -  T~' = t' -- t /  -- l + v'L 

Typical total and static temperature distribu- 
tions are plotted in Figs. 5 and 6. The total 
temperature distributions are probably of more 
direct interest in connection with energy separa- 
tion, inasmuch as the fluid will eventually be 
brought to rest outside the vortex; the static 
temperature distributions are included for com- 
parison and also indicate the direction of  heat 
flow by conduction. The limiting curves for zero 
Reynolds number 

{(T -- To)/(v~/2c~) = 2 (r/ro) ~ -- 1 } 

and for infinite Reynolds number 

{(T --ro)/(v~/2c~) = 0 } 

are shown dashed. 
The total temperature curves indicate con- 

siderable energy or temperature separation, the 
temperatures first rising (for large W d W )  and 
then dropping as the center is approached. (For 
the curves where the total temperatures con- 
tinuously fall as the center is approached, an 
overall energy balance on the vortex tube, to 
be discussed in the next section, indicates that 
the region of increasing temperatures lies 
between the vortex analyzed here and the tube 
wall.) As in the case of the velocity distributions 
the curves for low Reo and high W d W  are 
somewhat similar to those for high Reo and low 
WdW.  This is apparently due to the fact that 
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FIG. 5. Total temperature distributions in turbulent vortex, ro/r ,  = 2"2. 

the flow out of the core region, which seems to 
control the shape of the curves, tends to be the 
same in both cases. The static temperature 
curves indicate that in all cases the heat conduc- 
tion due to temperature gradients is toward the 
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FiG. 6. Static temperature distributions in t i n . l e n t  
vortex, ro / r ,  = 2.2. 

center of the vortex. Thus the cooling at the 
center cannot be caused by conduction due to 
temperature gradients; it may be caused by the 
exp~_~sion and contraction of the turbulent 
eddies or by viscous shear. The causes of the 
energy separation will be considered in detail 
in a later section. 

For purposes of comparison with the pre- 
dicted static temperature distributions in a 
vortex, temperatures obtained for an isentropic 
relation between static temperature and pressure 
(pressures from Fig. 8) are plotted as points in 
Fig. 6. For small radial flows the temperatures 
are in approximate isentropic equilibrium with 
the pressures because of expansion and con- 
traction of eddies. For larger radial flOWS the 
deviation of the vortex temperatures from the 
eqttih'brium temperatures increases. For very 
high radial-flow Reynolds numbers the d i ~ b u -  
tions are a£~i- isentropic. However, there is no 
total temperature separation in that case. The 
same result is obtained for laminar flow. 
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To check the temperature results against 
experiment we again use the experimental data 
of [7]. The same assumptions as were used in 
comparing the velocity results are used here. The 
comparison is shown in Fig. 7. The shapes of the 
analytical and experimental curves agree reason- 
ably well, indicating lower turbulent Reynolds 

I N L E T  PRESSURE,  
: Re o • Ioo (PStG) 

i ~ , ~ , ~  
_,,oi ',~ 

",%u.E f/ f 

/ / ~ pRI:DICTED 

r / r  t 

FIG. 7. Comparison of analytical total temperature 
profiles with ¢xpcfim~ts in [7]. 

Wo/W = O, rdr, = 1"54. 

numbers than were indicated for the velocity 
profiles. As was mentioned in connection with 
the velocity profiles, the indicated turbulent 
Reynolds numbers there might be too high 
because of boundary layer effects near the tube 
wall. 

Turbulent Reynolds number 
Thus far the turbulent Reynolds number Re,  

has been considered as a free parameter in the 
analysis, and no attempt has been made to 
predict its value. The unknown quantity in that 
parameter is, of course, the eddy dilfusivity or 
eddy viscosity. It is of interest to attempt to 
predict the eddy diffudvity by using yon 
K~trm6n's similarity hypothesis, which has been 
succes~,fl for flow through robes. The expression 
will first be modified for circular flow as follows: 
For purposes of analysis it is assumed that the 
turbulence at a point is dependent only on the 
shearing deformation at the point and in the 
vicinity of the point; that is, it is a function of 

the deformation and its derivatives. If we 
exclude derivatives higher than the first, then 
e =f{(dv/dr  -- v/r), d[dr(dv/dr -- v/r) }. Applica- 
tion of dimensional analysis tl-.:n gives 

_,~2 (dr~dr -- vlrP 
e = (23) 

[d/dr (de~at -- v/r)] 2 

The derivation for equation (23) can also be used 
t~ obtain the usual K~rman expression for the 
case of rectilinear flow. For the outer portion of 
the vortex, except at the lowest Reynolds num- 
bers, the tangential velocity is given approxi- 
mately by v = voro/r. The expression for e at the 
outer edge of the vortex then becomes 

= x2v0r0/2, or 

2 u o (24) 
R e  0 .-~ K2 V o 

In the present analysis it is assumed that Reo is 
uniform (pe = constant), so that equation (24) 
is applied throughout the vortex. For flow 
through a tube or channel, K has been found to 
lie between 0.3 and 0-4. If we take x = 0.3, then 
for the experiments in [7], the following values 
of Reo are calculated from equation (24): For 
inlet pressure p = 10 lb/in 2 gauge, Reo = 6.9, 
for p = 1 5 ,  Reo=6"7 .  and for p = 2 0 ,  
Reo = 7.1. Comparison of these values with 
those indicated by the experimental and analyti- 
cal temperature distributions in Fig. 7 indicates 
reasonable agreement. However, moce work 
should be done to prove or disprove the general 
validity of equations (23) or (24). It appears that 
in some cases the turbulence in the vortex might 
be influenced by the presence of the tangential 
nozzles in the wall. 

Pressure distributions 
In order to obtain an idea of the pumping 

power required to force the fluid through the 
vortex, the pressure distribution in the vortex is 
required. Both the static and total pressures will 
be calculated, inasmuch as part of the rotational 
kinetic energy leaving the vortex can probably 
he recovered. To calculate the static pressure 
distributions we use equation (19) and the 
perfect gas law to obtain 
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P0 
I "  (v/v°)' dr' ] 

X ,~ r' {(t -- to)/(t~o/2c~) + 2/(y -- 1)Mo s} (25) 

Thus Jn order to plot the pressure distributions 
the parameters M0 and y, in addition to those 
required for the velocity and temperature 
distributions, must be used. Total pressure 
distributions can be obtained from the static 
pressure distributions by the relation 

P p 

P0 P0 
"l÷{(V/Vo)S/[(t--to)/(c~/2c~) . ~ v/(~-z) 

+2/{6,- 1)Mo'}]}| 
× J 

(26) 

Note that for these equations to apply the 
quantity t - -  to/(~/2c~) + 2/6, -- l)Mo I must be 
greater than zero, inasmuch as the pressure 
(and temperature) will go to zero as that quan- 
tity approaches zero. 

Static and total pressure distributions for 
some typical cases are plotted in Figs. 8 and 9. 
For Reo = oo the total pressure is uniform, 
inasmuch as the flow is inviscid for that case, 
although the static pressure drops sharply as the 
center is approached. However, for realistic 
Reynolds numbers the differences between the 
static and total pressure curves are not nearly as 
great. 

, ~.~/ "/ 
• ~- ~..~ ,~7' 

/ m , ,  
r i b  

Flo. 8. Static pressure distributions in turbulent 
vortex, ro/r~ : 2"2, ~, : 1.4. 

MIG • • 

Fxo. 9. Total pressure distributions in turbulent 
vortex, ro/r~ = 2.2, y = 1"4. 

The curves for Reo = 2 and Mo = 1.0 corres- 
pond approximately to Hilsch's vortex tube 
data for inlet to outlet pressure ratios of 6 and 
10 (Fig. 10). (Hilsch's data will be discussed in 
the next section.) It is difficult to compare the 
pressures in the vortex with those measured by 
Hflsch outside the vortex because of uncertainty 
in the losses between the vortex and the environ- 
ment. However, the pressure distribution curves 
in Fig. 8 and 9 indicate both static and total 
pressure ratios between the outer radius and 
some average radius in the core of the same order 
of magnitude as the pressure ratios obtained by 
Hilsch. (Inlet pressure in atmospheres on 
Fig. 10 is equivalent to pressure ratio between 
inlet and outlet.) 

Ranque-Hilsch tube 
In comparing the analytical results with 

experimental results obtained in actual vortex 
tubes, one cannot consider the containing tube 
to be coincident with the outer radius of the 
vortex which has been analyzed. The velocity 
at the tube wall is zero, whereas that at the outer 
radius of the vortex is finite. Also, the heat 
conducted through the tube wall can be neg- 
lected, whereas that conducted across the outer 
radius of the vortex is not negligible. In addition, 
the presence of tangential nozzles in the wall for 
the entering fluid will tend to destroy the axial 
symmet,'X of the flow near the wall. It is there- 
fore assumed that there is a region of fluid 
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between the outer radius of the vortex and the 
tube in which there is no axial flow. The flow 
in this region will be complicated and no 
attempt will be made to analyze it in detail. 
However, the difference between the total 
temperature of the fluid entering the tube 
through the tangential nozzles and the tempera- 
ture at the outer radius can be obtained from an 
overall energy balance on the system as 

T, --  To = ( W d  W )  (T ,  --  To) + 

q- (1 -- W J W ) ( T h  -- To) 

where the specific heat is assumed uniform and 
the tube is adiabatic. The temperature 1", in 
geaeral differs from the total temperature at the 
outer radius of the vortex. The temperatures 
T, and Th are the integrated mixed mean 
temperatures of the fluid leaving the system 
ar, ially from the core and from the annulus of 
the vortex and are obtained from the to t a l  
temperature distributions and the following 
equations: 

Te-- T o =  2 f l ( T  - To)r'dr' (27) 
J0 

and 

Ii " To,r 
Tp, --  To = (ro/r~) I -- 1 (28) 

Predicted values of (T~, --  To)/(v[/2c~,) and 
(T~ -- To)/(vso/2c~) are plotted in Fig. 10 as 
functions of the ratio of axial mass flow through 
the core to total mass flow and turbulent 
Reynolds number for a radius ratio of 2.2. 
The upper and lower sets of curves are related 
by the overall energy balance 

--~( , - - T , ) ~  1--  (Tn- -To)=0(29)  

The limiting curves for Reo = 0 are given by 

(rh - r,)/(v~/2c,,) = W o / W  

and 

(T ,  --  T,)/(v~/2c,) = ( W e / W )  -- 1 

For Re o = oo and W,/W > O, 

T n - - T , = T , - - T ,  = 0  

The curves indicate that the total temperature 
separation between the two streams emerging 
from the vortex increases as the turbulent radial 
flow Reynolds number Reo increases, but that the 
value of W d W  for maximum temperature 
depression approaches zero for large Reo.* 
For very large values of Re ,  no total temperature 
separation will occur between the hot and cold 
streams except for values of W , / W  essentially 
equal to zero. This result indicates why turbu- 
lent rather than laminar flow is necessary to 
explain the energy separation in actual vortex 
tubes. (The curves for turbulent flow are 
qualitatively similar to those for laminar flow 
when pe in the Reynolds number is replaced 
by t~.) The laminar Reynolds numbers in vortex 
tubes are several orders of magnitude higher 
than the values of Reo shown in Fig. 10. Thus if 
the vortex is laminar, the effective Reynolds 
number will be so high that essentially no energy 
separation can take place. 

For a given Reynolds number the curves 
indicate that the energy separation could be 
increased by increasing the tangential velocity 
vo or by decreasing c~. The optimum value of 
Reo for favorable energy separation for a range 
of values of W J W  appears to be about 6. 
Comparison with the velocity distribution curves 
in Fig. 2 indicates that the velocity gradients 
and viscous shear are reasonably large through- 
out the vortex for a Reynolds number of 6. 
As will be seen later, the energy separation is 
related to the viscous shear. The viscous shear is 
also large for much larger Reynolds numbers, 
but for those Reynolds numbers the fluid does 
not remain in the vortex long enough for 
appreciable energy separation to take place 
(except very close to the center). 

Note that in general low total temperatures in 
the cold stream are obtained at low values of 
W J W ,  whereas high temperatures in the hot 
stream are more readily obtained at large 
values of W,/IV.  

Experimental data obtained by Hilsch [1] 
are plotted in Fig. 10 as dashed lines. His 
apparatus consisted of a tube with a nozzle 

* The difference between the appearance of these curves 
and corresponding curves in [5] is due to the fact that 
the Reynolds number  in [5] was based on the inside 
rather than on the outside radius. 
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FIG. 10. Predicted overall energy separation for turbulent vortex tube and comparison 
with experiments in [1]. r e / r ,  = 2.2. 

through which air could enter tangentially so as 
to form a vortex within the tube. Hot  air could 
then be withdrawn through an annular valve 
at one end of  the tube and cold air through an 
orifice at the other end. The entrance nozzle was 
near the end of  the tube where the orifice was 
located. In comparing the analytical and experi- 
mental results it was assumed that the air 
entered the tube at Mach 1, inasmuch as the mass 
flow was independent of  the exit valve setting 
for a given inlet pressure. The experimental 

curves for various inlet pressur~ shown in 
Fig. 10 should therefore correspond to our curves 
for various Reo =-- poUoro/pe ff it is assumed that 
pe is a function only o f  entering conditions and 
is thus independent of  WJW. The radius ratio 
in the analysis was taken as 2.2, corresponding 
to the ratio o f  the tube to orifice radius in the 
experiment. 

Good  agreement is indicated between the 
analytical curve for Reo =-2 and the experi- 
mental curves for inlet pressures of  6 and 10 arm 
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except at the lower values of Wd I4:. However, 
if we calculate the cold-stream temperatures 
from the experimental hot-stream temperatures 
and the energy balance equation (equation (29)), 
the results agree closely with the analytical 
curve for all values of Wd W. Thus, the experi- 
mental cold-stream temperatures are probably 
too high because of thermal conduction radially 
along the tube end wall or from the atmosphere 
to the stream. This possibility was mentioned by 
Hilsch. The fact that the curve for an inlet 
pressure of 1.5 atm (low flow rate) lies above the 
curve for Reo = 0 can probably also be explained 
by external conduction. 

In order to study the effect of radius ratio, 
curves for total temperature separation at 
various radius ratios are plotted in Fig. 11 for a 

re~r, 

3~21" 
0 .I .2 .3 .4 .~ .6 .7 .8 .9 .1.0 

~ / W  

FtG. 1 I. Effect of radius ratio on overall energy 
sepm'ation for turbulent vortex tube. Reo = 4-0. 

Reynolds number of 4. A considerable increase 
in temperature separation is indicated as the 
radius ratio increases from I.I to 6. This is 
apparently due to the fact that the total tem- 
perature drops as the vortex center is approached 
(Fig. 5). A narrow cold stream will therefore 
have a lower average total temperature than a 
wider one. 

CAUSES OF THE TOTAL TEMPERATURE 
SEPARATION 

Although a considerable amount of-dis- 
cussion exists in the literature concerning the 

causes of the temperature separation in the 
vortex tube, no general agreement seems to have 
been reached. In the present section the causes 
of the separation are studied by examining the 
magnitudes of the various terms in the energy 
equation. 

In order to determine whether compressibility 
in a fluid is necessary for temperature separation 
to occur, the incompressible case will first be 
considered. For this case it is convenient to 
consider static, rather than total temperatures, 
inasmuch as the total or stagnation temperature 
depends on the process by which the fluid is 
brought to rest. If the fluid is brought to rest 
isentropically, the total and static temperatures 
will be equal. In other cases the total temperature 
will be higher because of friction. 

For an incompressible fluid the static tem- 
perature change of a fluid element depends only 
on the heat added to the element by conduction 
and by dissipation. The energy equation thus 
can be written as 

pc~ D-O = PC~er d-r ~ drJ + qb (30) 

where the first term is the rate of change of 
internal energy per unit volume of the element, 
the second term is the rate at which heat is being 
transferred into the element by turbulent con- 
duction, and the last term is the dissipation. If it 
is assumed that the rate of production of turbu- 
lent energy at a point equals the rate of turbulent 
dissipation, the expression for $ can be written 
as ~ = pc(dr~dr - v/r) ~. In dimensionless form 
the energy equation becomes 

Dt' 1 d ( dti~ 2 [dv' v'~ z 
-- R e ~  dr' r' dr ] + -~, ~ dr' r'] 

(31) 
k 

The terms in the incompressible energy equation 
are plotted in Fig. 12 for the case of uniform 
axial flow. As a fluid element moves toward the 
center the dissipation term tends to increase the 
temperature of the particle, as would be expected. 
Because of the higher temperatures near the center, 
the center portion then tends to lose heat by con- 
duction and the outer regions gain heat. How- 
ever, the net result (shown dashed) is that the 
particle continuously increases in static tem- 
perature as it spirals inward toward the center. 
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The total temperature at any radius will never 
be lower than the static temperature, as dis- 
cussed earlier. Therefore for an incompressible 
fluid there appears to be no possibility of 
obtaining an energy separation in which the 
total temperature at the center of the vortex is 
lower than the entering temperature. 

]A -'i 
-o, ~ (%1. ~o, oo, 

FIG. 12. Terms in incompressible energy equation 
(equation (31)) contributing to rate of change of 
temperature of fluid element with respect to time. 

Uniform axial mass velocity. 

Thus the first requirement for energy separa- 
tion to take place in a vortex is that the fluid be 
compressible. It should be remembered, however, 
that the expansion of a compressible fluid does 
not always produce a cooling of the fluid. As is 
well known, the expansion of a perfeot gas 
flowing through an adiabatic tube or nozzle does 
not result in a total temperature drop. In order 
for cooling to take place, it is necessary that the 
fluid do work while it expands, as in a turbine, or 
that heat be transferred out of the fluid. Similarly, 
for the total temperature increase, work would 
have to be done on the fluid, or heat transferred 
into it. In order to see how these observations 
apply to the vortex, we rewrite the energy 
equation for a perfect gas (equation 17) ): 

pC,-DO t - ~ -  -- r dr rpcl, edr  -- 

l d ( ~ d p )  l d 
-- r -~ ~ + r -d-r (rw') (32) 

The left side of this equation can be written as 
pc, DT/DO. Equation (32) shows that the rate 
of change of total temperature of a fluid element 
as it spirals toward the center depends on the 
following contributions: 

-r dr rpc,tdr ' 

1 d ( r ~ d p ~ ,  
r dr dr /  

1 d 
r dr (rw), 

turbulent heat transfer 
into fluid element by 
temperature gradients: 

turbulent heat transfer 
into fluid element by 
pressure gradients (by 
expansion and con- 
traction of eddies); 

turbulent shear work 
done on element. 

Equation (32) can be written in dimensionless 

1 d/dt'~ 2 dr" 
p, DO' -- Rear' dr; [r' dr'] Re:' dr' ÷ 

-4- Rear' dr' r'v' v' (33) \dr - ; 

where equation (19) was used for (I/p)dp/dr, and 
the turbulent shear stress -r was set equal to 
p e ( d v / d r  - -  v / r ) .  

In order to illustrate the magnitudes of the 
contributions to the rate of change of total 
temperature of a particle we again consider the 
case of u~iform axial flow. Other axial flow 
distributions should give qualitatively similar 
results. The various contributions are plotted 
in Fig. 13. Although the terms for turbulent 
conduction due to temperature gradients and to 
pressure gradients are individually very large, 
especially near the vortex center, they tend to 
cancel. That is, the conduction of heat into the 
core region by temperature gradients is about 
equal to the heat conducted out by pressure 
gradients, or by expansion and contraction of 
eddies. Thus the shear work term produces most 

form as 

p DT' 
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of the energy separation. This is indicated by the 
fact that the curve for the sum of  the contribu- 
tions to the total temperature change (shown 
dashed) follows fairly closely the contribution 
due to shear work. Although the net conduction 
effect on dT/dO is reasonably small, it is negligible 
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Fro. 13. Terms in compressible energy equation 
(equation (33)) contributing to rate of chan~ of 
total temlmmtur* of fluid eiztnent with time. Uniform 

axial mass velocity. 

only for very small radii or radial flow ReynoMs 
numbers. More will be said about this limiting 
case later. At very large radii the shear work 
done on a fluid element is essentially zero 
because of  the small tangential velocities and 
velocity gradients in that region. At slightly 
smaller radii the shear work becomes positive 
and the total temperature of  a fluid element 
increases with time. At still smaller radii the 
shear becomes nogative and tim total tempera- 
ture of  an element decreases with time. Com- 
parison of  these curves with the tangential 

velocity profile curve in Fig. 3 indicates that the 
region of positive shear work or of  increasing 
total temperature corresponds to the region in 
which the velocity profile is still essentially 
inviscid (v cc r-l). Then as the fluid element moves 
to smaller radii the viscous or turbulence effects 
cause the velocity profile to depart from the 
1/r variation. In that region the shear work done 
on the element becomes negative due to the 
slowing-down tendency of the turbulent vis- 
cosity, and the total temperature drops. Thus the 
energy separation is dependent on the tangential 
velocity profile. The overall result is that the 
fluid in the core region does shear work on the 
fluid in the outer region as it expands while 
traveling toward the center. Thus energy is 
transferred from the core region to the annular 
region with a resultant total temperature 
separation. A smaller additional energy transfer 
is effected by the expansion and contraction of 
eddies in a radial pressure gradient. 

Inasmuch as the shear work term in the com- 
pressible energy equation gives the most import- 
ant contribution to the change in total tempera- 
ture of a fluid element as it moves radially, it is 
instructive to determine the contributions of 
various other physical processes to that term. 
This can be done by multiplying the momentum 
equation (2) by v and combining with the other 
momentum equation (19) to give 

:v ;1' 1 d ( r w . ) = o ~  - + 
r dr ~dr 

[d(v2/2) 1 dp] (34) 
+ p.  L T + 

That is, the shear work is distributed between a 
dissipation term, a kinetic energy term and a 
potential or pressure energy term. l .  the region 
where the shear work term and DT/dO are 
positive, the velocity distribution is approxi- 
mately that for inviscid flow (v Qc r-l). Thus the 
kinetic and potential energy terms nearly cancel 
(substitute equation (19) for dp/dr), so that the 
important contribution to the shear work in that 
region is the dissipation. The increase in total 
temperature with time of a fluid element in the 
annular region is therefore due principally to 
viscous (or turbulent) dissipation. The dissipa- 
tion can be important in a region where the 
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velocity profile is approximately that for inviscid 
flow because the shear stresses on the sides of a 
fluid element, aIthottgh, indi~v.idually large, 
nearly cancel. Thus the shear stress can have a 
negligible effect on the velocity profile and still 
produce sit, nificant dissipation. 

In the region near the center, where the shear 
work and DT/dO are negative, wheel flow is 
approached, and the dissipation becomes less 
important. The important contributions to the 
negative shear work, and thus to the drop in 
total temperature of a fluid element in that 
region are then the kinetic and the potential 
or pressure energy terms, both of which are 
negative. For wheel flow the two terms are equal. 

For the special case of no radial flow (Reo = O) 
Fig. 13 apparently yields n o  pertinent informa- 
tion; for that case DT/dO for a fluid particle is 
zero. Nevertheless the total temperature at the 
center of such a vortex is lower than that in 
the outer region (Fig. 5). In that case we can 
consider the total temperature separation to 
take place some-what as follows: For purposes of  
discussion we first neglect conduction due to 
expansion and contraction of eddies. The static 
temperature will then tend to be uniform, 
inasmuch as conduction due to temperature 
gradients will iron out any temperature differ- 
ences (no external heat transfer). Also, for no 
radial flow the fluid rotates as a solid body 
(v ac r). Thus since the static temperature is 
uniform, the total temperature will be lower near 
the center because of the lower velocities there. 
If turbulence occurs in the vortex, the total 
temperature near the center will be lowered still 
more because of heat conducted toward the 
outer regions by expansion and contraction of 
eddies in a pressure gradient. 

If the radial flow is not zero but very small, 
the above picture will still apply, inasmuch as 
the very small radial flow should not alter the 
velocity and temperature distributions appreci- 
ably. In this case we could, of course, also con- 
sider the cooling of a fluid element as being due 
to the shear work as discussed earlier in con- 
nection with Fig. 13. The two ways of looking 
at the energy separation are closely related, 
inasmuch as the shear work can be divided into 
a kinetic energy term and a pressure gradient 
term (equation (34)) the dissipation term drops 

out for wheel flow). The pressure gradient in 
turn is related to the temperature gradient by 
equation (18). Thus the drop in total temperature 
of a fluid element as it moves slowly toward the 
center can he thought of as being due either to 
the shear work done by the particle or to the 
lower velocities and static temperatures of the 
fluid near the center. The static temperatures are 
lower near the center because of the heat trans- 
ferred to larger radii by pressure gradients. 

It should be noticed that, although a long 
tube extending considerably beyond the location 
of the tangential nozzles for the entering fluid is 
usually used in investigations of energy separa- 
tion, the present model makes no mention of 
such a tube. The energy separation is assumed 
to take place entirely within the vortex where the 
tangential nozzles are located. This is in agree- 
ment with the experiments in [7], where the 
greatest energy separation was found to take 
place in the tube cross-section near the tangen- 
tial nozzles. In addition, some recent experiments 
by Savino and Ragsdale [13] indicate that 
considerable energy separation can take place 
in a vortex contained between two flat disks 
without an attached tube. The flow emerged 
from an opening at the center with a d/ameter on 
the order of the plate spacing. Most of the energy 
separation took place near the opening. 

The energy separation in vortex tubes is 
sometimes attributed to unsteady effects (other 
than the turbulence effects considered here). 
Although such effects might augment the 
energy separation under certain conditions, the 
present analysis indicates that considerable 
separation can be accounted for by considering 
only steady-state effects. 

C O ~ N S  
The analysis indicated that the dimensionless 

tangential velocity and temperature distributions 
are functions of the following parameters: The 
ratio of axial flow out of the core of the vortex 
to the total mass flow, the ratio of the core radius 
to the radius of the vortex, and a turbulent radial- 
flow Reynolds number which contains the eddy 
viscosity rather than the molecular viscosity. For 
the pressure distributions it was necessary in 
addition to specify the Mach number at a 
given radius and the ratio of the heat capacities. 
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The importance of turbulence for energy 
separation was found to be twofold: First, it 
causes the effective Reynolds number to remain 
low (where energy separation can take place), 
even when the laminar Reynolds number is high. 
This is because the turbulent viscosity may be 
several orders of  magnitude higher than the 
molecular viscosity. (However, it would not pay 
to increase the turbulence level indefinitely, 
inasmuch as an optimum turbulent Reynolds 
number was obtained.) Secondly, there is an 
additional energy separation in the turbulent 
case due to the expansion and contraction of the 
eddies as they move radially in a pressure 
gradient. The predicted curves for velocity and 
temperature distributions, as well as for overall 
energy separation, closely resembled experi- 
mental curves, so that it appears that the model 
analyzed displays most of the features of actual 
vortex tubes. 

In analyzing the causes of the energy separa- 
tion it was determined first that the fluid must 
be compressible, since the total temperature of a 
particle in an incompressible vortex can only 
increase, owing to the dissipation. By consider- 
ing the magnitudes of  the terms in the com- 
pressible energy equation, it was found that the 
terms for turbulent conduction due to tempera- 
ture gradients and to pressure gradients, 
although individually large, tended to cancel. 
Thus most of  the total temperature change of a 
fluid element as it spiraled toward the center was 
due to the shear work done on the element 
(positive in the outer region, negative in the core). 
Therefore the energy separation depends on the 
tangential velocity profile, in particular, on the 
deviation of the profile near the center from that 
for inviscid flow. The overall effect is that the 
fluid in the core region does shear work on the 
fluid in the outer region with a resultant total 
temperature separation. The shear work term 
was further divided into a dissipation term, a 
kinetic energy term and a potential or pressure 
energy term. In the region of high total tem- 
peratures the dissipation term was found to 
produce most of the heating of a fluid element. 
The decrease of total temperature of an element 
as it moves in the core region was due princi- 
pally to the kinetic and pressure energy terms, 
both of which are negative in that region. 

~ P ~ q D I X  
Derivation o f  Pressure Gradient Conduction Term 

by Modified Mixing-length Theory 
Although the mixing-length theory may be an 

oversimplification of  the actual turbulent trans- 
fer in a vortex, it provides a convenient way of 
arriving at the pressure gradient conduction 
term in equation (17). In the following analysis. 
eddies are assumed to move transversely in the 
vortex between cylindrical surfaces (1) and (2) 
which are separated by the small distance L the 
average mixing length at a particular radius. 

I Ztz, p 2 

.,t 2 

Z 

Eddies also move axially and tangentially, but 
these should not affect the radial heat transfer. 
The eddies originate from an instability at either 
surface (l) or (2) and travel to the other surface 
where they mix with the fluid. Consider an eddy 
of fluid which originates at the inner surface (1), 
where it has the time average temperature and 
pressure of  the fluid at surface (1). As discussed 
in the body of the text the eddy is assumed to be 
compressed isentropically as it moves to the 
region of  higher pressure at (2). As the eddy 
arrives at surface (2), conservation of  mass 
requires that an equal mass of  fluid must leave. 
The net heat transported to surface (2) is then 
equal to the mass of the eddy multiplied by 
c~(t~ --  t2), where t~ is the temperature of the 
eddy as it arrives at surface (2) and t2 is the 
temperature of the surrounding fluid. The turbu- 
lent heat transfer per unit area per unit time 
from surface (1) to surface (2) is then given by 

qt = c~pfu'(t~ --  t~) (A1) 

where f is the fraction of surface (2) on which 
eddies are arriving, and u' is the average velocity 
of  the eddies. Equation (A I) can be written as 
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where At I is the change ill average fluid tem- 
perature between (1) and (2) and At, is the 
corresponding change in eddy temperature. In 
differential fo rm equation (A2) becomes 

qt = - -  c~pfu' l  -dr dr ] 

For  an isentropic compression equation (18) 
can be substituted to give 

( d r  l dp) (A3) 
qt = - -  c~pe -dr pc~ dr 

where the eddy diffusivity e was substituted for 
fu ' / .  This expression for turbulent heat transfer 
is the same as the expression for turbulent heat 
transfer in equation (17). 

~ C F . S  
1. R. HiLscx, Rev. Sci. lnstrum. 15, (1947). 
2. R. W~..EY, A Bibliography and Survey o f  the Vortex 

Tube. The College of Aeronautics, Cranfield (1954). 
3. C. D. ~ 1 ) , t ,  Flow in a Viscous Vortex. Report 

494C-I, TN 56-126, Southwest Research Institute 
(1956). 

4. J. J. VAN DEV.M'r~, AppL Sci. Res. A 3, 3 (1952). 
5. R. G. D v a s s ~  and M. Pr~J~ ,~a t ,  An Analysis o f  

the Energy Separation in Laminar and Turbule,it 
Compressible VortexFlows. Heat Transfer and Fluid 
Mechanics Institute, Stanford University Press (1958). 

6. H. A. EI~TE~ and H. I.a, Steady Vortex Flow in a 
Real Fluid. Heat Transfer and Fluid Mechanics 
Institute, Stanford University Press (1951). 

7. J. P. HAR'r~n~r and E. R. G. EOc~T, F.~perimental 
Study o f  the Velocity and Temperature Distribution in 
a High Velocity Vortex Type Flow. Heat Transfer 
and Fluid Mechanics Institute, Stanford University 
Press (1956). 

8. S. PAl, Viscous Flow Theory, pp. 37, 43. Van 
Nostrand, New York (1956). 

9. R. KASSNEIt and E. KN(3[RNSCHII.D, Friction Laws and 
Energy Transfer in Circular Flow. TR No. F-TR2198- 
ND, WADC (1948). 

10. R. G. Dv.msl.l~, Analysis o f  Fully Deoeloped Turbu- 
lent Heat Transfer at Low Peeler Numbers in Smooth 
Tubes with Applications to Liquid Metals. NACA 
RM E52F05 (1952). 

11. Meteorology and Atomic Energy p. 27. Supt. Does., 
U.S. GPO, Wash., D.C. (1955). 

12. J. E. LAY, Trans. Amer. Soc. Mech. Engrs. 202(1959). 
13. J. M. SAVlNO and R. T. R~GSDAI~, Some Temperature 

and Pressure Measurements in Confined Vortex Fields. 
ASME Preprint No. 60-SA--4 (1960). 


